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Abstract: In this work autoregressive filters based on Gaussian processes are used to forecast 
time series. As a benchmark function the Mackey-Glass delay differential equation is used. 
The time lagged inputs of the filters and their covariance functions are determined via a 
multicriteria, genetic algorithm – namely the NSGA-II. The used optimization criteria are the 
number of inputs and the prediction error of the filters on the known data which leads to 
Pareto optimal solutions. The obtained filters are validated with out-of-sample data and their 
properties are discussed in the context of the given problem. 
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1. INTRODUCTION 
 

Natural phenomena prediction is a challenging topic, 
useful for control problems from agricultural 
activities. Before starting with the agriculture 
venture, the availability of estimated scenarios for 
water predictability would help the producer to 
decide. There are several approaches based on neural 
networks (NN) that face the rainfall forecast problem 
for energy demand purposes (Chow et al., 1996), for 
water availability (Liu et al., 1999) and for seeding 
growth (Patiño et al., 2007). Thereby the forecasted 
time series is either taken from an ensemble of 
measurement points or from a benchmark function. 
 
In this work the Mackey-Glass equation is used as a 
benchmark function to test a new approach to time 
series forecasting based on Gaussian processes (GP) 
which belong to the class of kernel methods. 
 

1.1. Overview of the Mackey-Glass equation 
 
The Mackey-Glass equation (MG) serves to model 
natural phenomena. It has been used by various 
authors to compare different techniques for 

foretelling and regression models (Velásquez et al., 
2004). Therefore the MG equation is chosen as a 
benchmark function in this work to validate the 
proposed approach to time series forecasting. 
 
The MG equation is explained by the time delay 
differential equation defined as 
 

(1) 

 

where α, β, and c are parameters and τ is the delay 
time (Glass et al., 1988). According as τ increases, 
the solution turns from periodic to chaotic. Equation 
(1) is solved by a standard fourth order Runge-Kutta 
integration step, and the series to forecast is formed 
by sampling values with a given time interval. 
 
Thus, a time series with a random-like behavior is 
obtained, and the long-term behavior changes 
thoroughly by changing the initial conditions. 
Furthermore, by setting the parameter β ranging 
between 0.3 and 0.8 the stochastic dependence of the 
deterministic time series obtained varies according to 
its roughness. 
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1.2. The proposed algorithm 
 
One of the motivations for this study follows the 
closed-loop control scheme where the controller 
considers meteorological future conditions for 
designing the control law as shown in Fig. 1. In that 
scheme the controller considers the actual state of the 
crop by a state observer and the meteorological 
variables, referred by x(k) and Ro, respectively. 
However, this work is only dedicated to the 
prediction part of the controller. 

 
Fig. 1. Closed-loop PC-based control approach in 
which a sequence of future meteorological conditions 
is considered. 
 
The predictions for the controller are based on the 
past values of a variable which can be interpreted as 
a time series. Using this time series, an 
autoregressive filter can be implemented as a one-
step-ahead predictor for the observed values. This 
procedure was applied successfully in many 
publications (Pucheta et al., 2007a; Velásquez et al., 
2004), where the filters were realized as NN. 
 
The new aspect of this work is the application of a 
nonparametric, autoregressive filter whose properties 
are optimized by a multicriteria, genetic algorithm. 
The advantage of nonparametric filters over ARMA 
NN-based filters is that very little a priori knowledge 
of the modeled data is needed because there are no 
parameters – like e.g. the number of layers of a NN – 
that have to be defined a priori. 
 

2. PROBLEM FORMULATION 
 
This work deals with a classical prediction problem. 
Given the past states of a process one is interested in 
forecasting some future states of this process. 
Thereby the states are equally distributed over time, 
i.e. x(t-T), x(t-2T), . . . , x(t-mT), where T is the 
sampling period and m is the prediction order. 
 
The main issue when forecasting a time series is how 
to retrieve the maximum possible information from 
the known data. In other words one is interested in 
adjusting the parameters of a filter such that the given 
data is explained by the filter in the most accurate 
way. 
 

Most approaches to time series forecasting deal with 
parametric filters like NN whose coefficients are 
adapted according to a learning rule (Pucheta et al., 
2009). In this work however, nonparametric filters – 
namely GP – with covariance functions are used. 
Thus, one of the main problems is to find a 
covariance function that works well with the given 
data. 
 
Besides the covariance function, the time lags of the 
inputs of the autoregressive filter need to be defined 
according to the long and short term dependences of 
the given time series. Thereby one has to keep in 
mind that the covariance function and the time 
lagged inputs are interfering with each other. As a 
result both optimization problems need to be solved 
simultaneously. 
 
Hence, one goal of this work is to show that the 
applied optimization algorithm converges for the 
given problem. Apart from that it has to be shown 
that the found combinations of a covariance function 
and a set of inputs lead to a GP filter that predicts the 
given time series with a small error. 
 
The described approach is evaluated with a time 
series that is taken from the MG equation (1). As 
training data we use the first 102 values whereas the 
following 18 values are used as validation data. 
 

3. PROPOSED APPROACH 
 
This work describes an approach to select the inputs 
and the covariance function of a nonparametric filter. 
Both problems – finding a covariance function and 
determining the inputs of the filter model – are 
discrete, because the covariance function is chosen 
out of a discrete set of possible functions and the 
inputs are defined by discrete time lags. To handle 
these two optimization problems a genetic, 
nondominated sorting algorithm called NSGA-II 
(Deb, 2002 et al.) is used. 
 

3.1. APPLICATION OF THE NSGA-II 
 
The NSGA-II is a multiobjective genetic algorithm 
that showed good results for various optimization 
problems (Correa et al., 2008; Deb, 2002 et al.). The 
algorithm starts with random individuals which 
represent the first generation. After the evaluation of 
the first generation the best individuals are chosen as 
parents and the next generation is created via 
mutation and crossover operations of the parents. 
Repeating this procedure for various generations 
leads to optimized individuals. 
 
In this work each individual represents a GP with a 
covariance function and certain time lags. Via 
mutation and crossover operators the covariance 
function and the time lags can change independently 
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from generation to generation. Hence the NSGA-II is 
searching for an optimal combination of a covariance 
function and time lagged inputs. 
 
To apply the NSGA-II one has to define the 
optimization criteria – called fitness values – which 
serve to classify the individuals of one generation. 
Thereby two goals should be kept in mind. On the 
one hand the filter model has to be as accurate as 
possible. On the other hand the number of inputs of 
the Gaussian Process should be as small as possible 
to avoid overfitting. 
 
The first fitness value is a measure for the accuracy 
of the GP filter. To evaluate this fitness value the 
prediction error on out-of-sample data is calculated. 
Therefore the given 102 values are split into two 
parts so that the filter can be trained with the first 82 
values before it is evaluated on the remaining 20 
values. Keeping in mind that the time lags of the GP 
are limited to 30, the first training point has the index 
31. Otherwise it is impossible to create the input 
vector of the GP. Hence, 52 training points can be 
created out of the 82 data points. 
 
To compare the performance of different filters the 
Symmetric Mean Absolute Percent Error (SMAPE) is 
calculated for each filter. The SMAPE is defined as 
 

(2) 
 
 
Here t is the observation time, n is the size of the test 
set, Xt  and Ft are the actual and the forecasted time 
series values at time t respectively. The SMAPE 
calculates the symmetric absolute error between the 
actual Xt and its corresponding forecast value Ft for 
the specified part of the given data. Thus one of the 
optimization criteria is to minimize the SMAPE of 
the filter model by finding an optimal subset of inputs 
together with a covariance function. 
 
The second fitness value is the number of inputs of 
the filter, i.e. the number of past values that are used 
to predict the next value. To avoid a high input 
dimension, which might lead to overfitting, the filters 
with fewer inputs are preferred by the genetic 
algorithm. 
 
The two defined fitness values are competing because 
a filter with only few inputs does not have much 
information about the time series and will thus tend 
to have a higher SMAPE. Therefore the NSGA-II 
will not find one best solution but various solutions 
that represent different trade-offs between the 
SMAPE and the number of inputs. These trade-off 
solutions lie on the so called Pareto Front. For 
example one solution might be a filter with few 
inputs but a high SMAPE whereas a filter with more 
inputs leads to a lower SMAPE. 
 

After running the NSGA-II one has to choose the 
individual from the Pareto Front that marks the 
desired trade off between the two fitness values. In 
this case the focus is set on the filter with the smallest 
SMAPE which means that at the time when the best 
individual is chosen no attention is paid to the 
number of inputs. 
 
To validate the results of the described optimization 
algorithm, more than one multistart can be executed. 
This means that the algorithm is started several times 
from a random population. 
 

3.2. Parameters of the NSGA-II 
 
There are several parameters that have to be defined 
when running the NSGA-II. Besides the inner 
parameters of the genetic algorithm there are various 
problem-specific parameters that have influence on 
the found solutions. 
 
In this work the population of the NSGA-II consists 
of 200 individuals that are evaluated over 200 
generations. Hence the fitness values of 40.000 
individuals are calculated in each multistart. After the 
evaluation of one generation new individuals are 
created via mutation with a probability of 10% and 
via crossover operations with a probability of 90%. 
 
Each individual must have between 1 and 20 inputs 
from the past and none of these inputs can have a 
time lag less than 1 or greater than 30. In other words 
1≤i≤20, min(m1,...,mi)≥1 and max(m1,...,mi)≤30 for 
 

(3) 
 
where GP(·) is the Gaussian Process, y*(t) is the 
predicted value at time t and T is the sampling period. 
 
For this setup there are more than 6108 possible 
combinations of inputs from the past. In Section 4 it 
is shown however, that the 40.000 evaluations of 
each multistart are sufficient to obtain good 
approximations of the Pareto Front. 
 
The mentioned parameters describe the optimization 
process that searches for optimal sets of inputs in 
combination with a covariance function. Thereby the 
covariance function is taken from a set of possible 
functions where each function has special properties 
which might lead to accurate filters for certain inputs. 
The used covariance functions are: 
 
- linear covariance function with ARD; 
- squared exponential covariance function with 

ARD; 
- neural network covariance function; 
- isotropic rational quadratic covariance function; 
- Matern covariance function with υ=3/2 and 

υ=5/  2 (Matern, 1960); 
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- the sum of a linear covariance function with 

ARD and a white noise covariance function; 
- the sum of a squared exponential covariance 

function with ARD and a white noise covariance 
function; 

- the sum of a neural network covariance function 
and a white noise covariance function; 

- the sum of a isotropic rational quadratic 
covariance function and a white noise covariance 
function. 

 
Thereby ARD stands for automatic relevance 
determination (Neal, 1996). A detailed description of 
these covariance functions can be found in 
(Rasmussen et al., 2006). 
 
In total seven multistarts are carried out with the 
described configuration to validate the convergence 
properties of the NSGA-II in the given case. 
 

3.3.  Training and Prediction of the Gaussian 
Process 

 
The training of the GP consists of two stages. First of 
all the training data is constructed out of the given 
time series according to the defined time lags. 
 
Then the GP filter is tuned with the obtained training 
data by varying the so called hyperparameters of the 
covariance function. Depending on the covariance 
function there are several hyperparameters available 
that need to be adjusted to suit the training data. In 
other words one is interested in finding a maximum 
of the log marginal likelihood. Without going into 
detail the framework presented in (Rasmussen et al., 
2006) is used to optimize the hyperparameters in this 
work. Once the hyperparameters are found the 
training process is finished. 
 
To evaluate a GP filter one has to calculate the 
covariance matrix K and its inverse K-1. For n given 
training points K has size (nxn). Its entries are the 
pairwise covariances of the training inputs which 
makes K a symmetric matrix. Supposing that the 
variables have a joint Gaussian distribution with zero 
mean, the mean prediction for an unknown input f* is 
given by 
 
 
where X* is the unknown input, X are the training 
inputs and f are the training outputs. If the mean of 
the data is not zero, it can be transformed 
straightforward to fit the conditions. 
 

4. MAIN RESULTS 
 
In this section the proposed approach is tested for 
different parameter settings of the MG equation. 
Thereby special attention is paid to the results of the 

genetic algorithm because it is an important part of 
the described modeling process. 
 

4.1. Time series from MG equations 
 
The used time series are obtained from the MG 
equation (1) with different values for the parameter β. 
The variations of β and the resulting Hurst 
parameters H are shown in Table 1. For each β 120 
data points were created from which the first 102 
points are used to adjust the filter model while the 
last 18 points serve as validation data. 
 
To characterize each time series, Hurst’s parameter H 
is used. This parameter is an indicator for the 
roughness of a time series where a high value of H 
indicates a smooth series. Hence the first series with 
β = 0.3 is the smoothest whereas the third series with 
β = 0.8 is the roughest. 
 

 
 

4.2. Results of the NSGA-II 
 
For each given time series seven multistarts of the 
NSGA-II were evaluated. Exemplary the Pareto 
Fronts of the multistarts of the time series with β = 
0.8 are shown in Fig. 2. One can see that each 
multistart found almost the same Pareto Front. This is 
a strong indicator that the chosen population size and 
the number of generations were sufficient.  

Table 1 Parameters of different time series obtained 
from the MG equation. 

 
Series No. β H 

1 0.3 0.92 
2 0.5 0.58 
3 0.8 0.46 

 

    fXXKXXKf 1** ,, 

Fig. 2: Pareto Fronts of seven multistarts for the time 
series β = 0.8. 



AADECA 2010 – Semana del Control Automático – XXIIº Congreso Argentino de Control Automático 
31 de Agosto al 2 de Septiembre de 2010 – Buenos Aires, Argentina. 

 
 
Once all multistarts are finished the best trade-off 
solution has to be chosen from the Pareto Front. 
While running the NSGA-II the number of time 
lagged inputs was an optimization criterion in order 
to reduce the dimensionality of the GP filter. Still the 
main aspect of this work is the prediction of a time 
series with the smallest possible SMAPE as defined 
by equation (2). For that reason the individual with 
the smallest SMAPE of all multistarts is chosen for 
the final model. 
 
The GP is realized as described by equation (3) 
together with a covariance function. 
 
For the time series defined by β = 0.3 the model with 
the smallest SMAPE has the coefficients mi = 
{3,7,9,10,17,25,26} and a rational quadratic 
covariance function with noise. 
 
The time series for β = 0.5 is best modeled by the 
time lagged inputs mi = 
{3,6,7,8,9,11,12,15,17,20,23,24}. The corresponding 
covariance function is a matern function with υ=3/2. 
 
In the case β = 0.8 the best combination of time 
lagged inputs is mi = 
{3,4,5,7,9,10,12,13,16,17,23,25}.  These inputs 
require a matern covariance function with υ=3/2. 
 
Besides the best configurations of all multistarts the 
best covariance functions of each multistart are 
shown in Table 2. The results are discussed in the 
next section. 
 

 
 

4.3. Prediction results for the MG time series 
 
The GP filters are trained with the first 102 values of 
a time series predictions are made for the following 
18 points. In the training process these data points 
were not taken into account, hence they are out of 
sample data. 
 
In Fig. 3 the predictions of the GP filters and the data 
of the time series are plotted. Considering the 
SMAPE of each prediction and the corresponding 
Hurst’s parameter as shown in Table 1 it can be seen 
that a time series with a high Hurst’s parameter H is 
easier to predict than one with a low value of H. 

5. DISCUSSION 
 
In this work an approach to time series forecasting 
was presented. Because of the long runtimes of the 
NSGA-II the described approach was only used to 
predict the last values of a time series and not to 
make online predictions. 
  
Regarding the results of the NSGA-II and the 
predictions from the previous section one can see the 

Table 2. Selected covariance functions of the NSGA-II. 
The covariance function of the best individual of each  

multistart is counted. 
 

Series 
No. 

Name of 
Covariance Function 

Best covariance 
function in 
7 multistarts 

squared exponential 1 

squared exponential 
+ white noise 

2 1 

rational quadratic 
+ white noise 

4 

neural network 
+ white noise 

2 

matern function, 
υ=3/2 

2 2 

rational quadratic 3 

squared exponential 3 

3 matern function, 
υ=3/2 

4 

 

Fig. 3: Prediction results of the GP filters for the 
time series with β = 0.3, β = 0.5 and β = 0.8. 
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influence of the smoothness of the time series. In this 
case the smoothness depends basically on the 
parameter β in the MG equation. For low values of β 
smooth time series are created which are best 
modeled by standard covariance functions like a 
squared exponential or a rational quadratic 
covariance function with noise. 
 
For rougher time series the aggregation of noise to 
the covariance function becomes more redundant and 
the matern covariance function (Matern, 1960) with 
υ=3/2 gets more important as β increases. 
 
The complexity of the time series is not only 
reflected by the selected covariance functions but 
also by the number of used time lags. In the case β = 
0.3 only seven time lags are used whereas in the case 
β = 0.8 the GP has 14 time lagged inputs. This means 
also that the NSGA-II did not use the allowed 
maximum of 20 time lagged inputs. 
 
Besides the number of time lagged inputs it has to be 
noticed that none of the time lags is greater than 26. 
Keeping in mind that the NSGA-II could have chosen 
time lags up to 30 this result is a confirmation that the 
NSGA-II was run with a sufficient degree of freedom 
concerning the time lags. 
 

6. CONCLUSIONS 
 
In this work, a genetic algorithm based design 
approach for the properties of a Gaussian process for 
time series forecasting was presented. The proposed 
approach is quite different to other filter approaches 
for time series forecasting. Instead of a NN based 
filter a nonparametric filter based on a GP is used. 
The parameters of the GP filter were adjusted offline 
by a genetic algorithm that requires several data 
points to work properly. For that reason only 
forecasts of the last 18 points of the time series were 
made. 
 
Although the described algorithm is straightforward, 
the results obtained from a classical benchmark 
function like the MG equation are encouraging, 
especially for a smooth behavior of time series. 
Because of the special properties of this approach, it 
is difficult to compare the results with other papers. 
Still the approach deserves another study with real 
data. 
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